The size of an atom is measured in Angstrom (Å) .
1 Å =
10
− 10
m
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaaGymaiaabccaqaaaaaaaaaWdbiaahwmacqGH9aqpcaaIXaGa
aGimamaaCaaaleqabaGaeyOeI0IaaGymaiaaicdaaaGccaWGTbaaaa@41EE@
The size of the nucleus is measured in the Fermi meter (fm) .
1 f m =
10
− 15
m
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaaGymaiaabc
caqaaaaaaaaaWdbiaadAgacaWGTbGaaiiOaiabg2da9iaaigdacaaI
WaWaaWbaaSqabeaacqGHsislcaaIXaGaaGynaaaakiaad2gaaaa@409A@
Electric Potential The work done to bring a unit positive test charge from infinity (∞) to a point in an electric field is called electric potential at that point (P).
Electric potential formula :
V =
W
q
0
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamOvaiabg2
da9maalaaabaGaae4vaaqaaiaadghadaWgaaWcbaGaaGimaaqabaaa
aaaa@3AB6@
Where: V = Electric Potential; W = Work Done; q0 = Unit Positive Charge
The unit of electric potential is joule per coulomb or volt .
J o u l e (J)
C o u l o m b (C)
= V o l t ( V )
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
WGkbGaam4BaiaadwhacaWGSbGaamyzaiaabccacaqGOaGaaeOsaiaa
bMcaaeaacaWGdbGaam4BaiaadwhacaWGSbGaam4Baiaad2gacaWGIb
GaaeiiaiaabIcacaqGdbGaaeykaaaacqGH9aqpcaWGwbGaam4Baiaa
dYgacaWG0bGaaiikaiaadAfacaGGPaaaaa@4DA6@
Potential difference formula :
Δ V =
V
A
−
V
B
=
W
q
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaam
Ovaiabg2da9iaabccacaWGwbWaaSbaaSqaaiaadgeaaeqaaOGaeyOe
I0IaaeiiaiaadAfadaWgaaWcbaGaamOqaaqabaGccqGH9aqpdaWcaa
qaaiaabEfaaeaacaWGXbaaaaaa@4230@
Where: ΔV = Potential Difference; VA = Higher Potential; VB = Lower Potential; W = Work; q = Charge
Note: The formula for electric potential and potential difference is the same.
Electric Current The flow rate of electric charge in a particular direction is called electric current.
Electric current formula :
I =
Q
t
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaaeysaiaabc
cacaqG9aGaaeiiamaalaaabaGaaeyuaaqaaiaabshaaaaaaa@3ACD@
Where: I = Electric current; Q = Charge; t = Time
The unit of electric current is Coulomb per second or Ampere (A) .
Coulomb (C)
Second (s)
= Ampere (A)
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
qGdbGaae4BaiaabwhacaqGSbGaae4Baiaab2gacaqGIbGaaeiiaiaa
bIcacaqGdbGaaeykaaqaaiaabofacaqGLbGaae4yaiaab+gacaqGUb
GaaeizaiaabccacaqGOaGaae4CaiaabMcaaaGaeyypa0Jaaeiiaiaa
bgeacaqGTbGaaeiCaiaabwgacaqGYbGaaeyzaiaabccacaqGOaGaae
yqaiaabMcaaaa@5187@
Note:
Current flow from higher potential to lower potential. The electric current flows in the opposite direction of the flow of electrons. For a flow of electric current., there should be a potential difference across the ends of the wire. Electric Resistance It is the property of a material that opposes the current flow, determining how difficult it is for electrons to move through it.
Resistance is defined by Ohm’s Law, which states:
R =
V
I
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabc
cacaqG9aGaaeiiamaalaaabaGaaeOvaaqaaiaabMeaaaaaaa@3AB0@
Where: R = Resistance; V = Electrical potential; I = Electrical current
The unit of Resistance is ohms (Ω) .
Resistivity Depends on material and temperature. It does not depend on the length or cross-sectional area. its value remains constant for specific materials.
Resistivity formula :
ρ =
R × A
L
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaae
iiaiaab2dacaqGGaWaaSaaaeaacaqGsbGaaeiiaiabgEna0kaabcca
caqGbbaabaGaamitaaaaaaa@3FBD@
Where: ρ = Resistivity; R = Resistance; L = Length of wire; A = Cross-sectional area
The unit of resistivity is ohm-meter (Ω-m) .
Conductance The ability of a material to allow the flow of electric current through it. It is the inverse of resistance and measures how easily electrons can move through a conductor. Conductance is represented by the symbol 𝐺.
The relationship between conductance and resistance is:
G =
1
R
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaam4raiabg2da9maalaaabaGaaGymaaqaaiaadkfaaaaaaa@3CA0@
Where: G = Conductance; R = Resistance
The unit of conductance is ohm-1 (Ω-1 ) or mho or Siemens .
1
o h m
= o h
m
− 1
=
Ω
− 1
= m h o = S i e m e n s
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
aIXaaabaGaam4BaiaadIgacaWGTbaaaiabg2da9iaad+gacaWGObGa
amyBamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da9iabfM6axn
aaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da9iaad2gacaWGObGa
am4Baiabg2da9iaadofacaWGPbGaamyzaiaad2gacaWGLbGaamOBai
aadohaaaa@4F3F@
Note : A higher conductance means lower resistance and better current flow.
Conductivity Ability to conduct electric current, showing how easily electrons flow through it. It is the inverse of resistivity and depends on factors like material composition and temperature.
Conductivity formula :
σ =
1
ρ
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaae
iiaiaab2dacaqGGaWaaSaaaeaacaaIXaaabaGaeqyWdihaaaaa@3C74@
Where: σ = Conductivity; ρ = Resistivity
The conductivity unit is ohm-1 /meter (Ω-1 /m) , mho/meter (mho/m) , or Siemens/meter (S/m) .
Ω
− 1
m
=
m h o
m
=
Siemens
m
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaWaaSGaaeaacq
qHPoWvdaahaaWcbeqaaiabgkHiTiaaigdaaaaakeaacaWGTbaaaiab
g2da9maaliaabaGaamyBaiaadIgacaWGVbaabaGaamyBaaaacqGH9a
qpdaWccaqaaiaabofacaqGPbGaaeyzaiaab2gacaqGLbGaaeOBaiaa
bohaaeaacaWGTbaaaaaa@47E0@
Temperature Effect on Resistance Due to an increase in temperature resistance may increase or decrease because it depends on the material.For conductor : If the temperature increases (↑ ) → resistance increases (↑ )For semiconductors : If the temperature increases (↑ ) → resistance decreases (↓ ) At 0° Kelvin (- 273.15°C), the conductance of the semiconductor becomes zero. Superconductor: When the resistance of a material becomes almost zero at extremely low temperatures, that material becomes a superconductor.At 4.2 Kelvin (-268.8 °C)., mercury behaves like a superconductor. Fuse wire Low melting point wire. High resistance (fragile wire). Made up of Lead (Pb) + Tin (Sn) alloy wire Combination of Resistance Series Combination: Equivalent Resistance formula for series combination :
R
e q .
=
R
1
+
R
2
+
R
3
+ …
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa
aaleaacaWGLbGaamyCaiaac6caaeqaaOGaeyypa0JaamOuamaaBaaa
leaacaaIXaaabeaakiabgUcaRiaadkfadaWgaaWcbaGaaGOmaaqaba
GccqGHRaWkcaWGsbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaiOl
aiaac6cacaGGUaaaaa@44DC@
Where: R eq. = Equivalent resistance
Note : Current remains the same but voltage varies.
V =
V
1
+
V
2
+
V
3
+ …
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamOvaiabg2
da9iaadAfadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGwbWaaSba
aSqaaiaaikdaaeqaaOGaey4kaSIaamOvamaaBaaaleaacaaIZaaabe
aakiabgUcaRiaac6cacaGGUaGaaiOlaaaa@4224@
Where: V = Electric potential
Parallel Combination: Equivalent Resistance formula for parallel combination :
R
e q .
=
1
R
1
+
1
R
2
+
1
R
3
+ …
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa
aaleaacaWGLbGaamyCaiaac6caaeqaaOGaeyypa0ZaaSaaaeaacaaI
XaaabaGaamOuamaaBaaaleaacaaIXaaabeaaaaGccqGHRaWkdaWcaa
qaaiaaigdaaeaacaWGsbWaaSbaaSqaaiaaikdaaeqaaaaakiabgUca
RmaalaaabaGaaGymaaqaaiaadkfadaWgaaWcbaGaaG4maaqabaaaaO
Gaey4kaSIaaiOlaiaac6cacaGGUaaaaa@473D@
Where: R eq. = Equivalent resistance
Note : Current varies but voltage remains the same.
I =
I
1
+
I
2
+
I
3
+ …
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamysaiabg2
da9iaadMeadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGjbWaaSba
aSqaaiaaikdaaeqaaOGaey4kaSIaamysamaaBaaaleaacaaIZaaabe
aakiabgUcaRiaac6cacaGGUaGaaiOlaaaa@41F0@
Where: I = Electric current
Special Note: If ‘n’ number of wires is given, where, n = 1, 2, 3, 4…, and each wire has the same resistance is ‘R’. Then:
R
e q .
= n . R
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamOuamaaBaaaleaacaWGLbGaamyCaiaac6caaeqaaOGaeyyp
a0JaamOBaiaac6cacaWGsbaaaa@403D@
For parallel combination:
R
e q .
=
R
n
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamOuamaaBaaaleaacaWGLbGaamyCaiaac6caaeqaaOGaeyyp
a0ZaaSaaaeaacaWGsbaabaGaamOBaaaaaaa@3F9B@
Ohm’s Law Valid at constant temperature. Valid only for conductors. At a given temperature the ratio of potential difference and electric current remains the same.
V
I
= Constant = Resistance (R)
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaWaaSaaaeaacaWGwbaabaGaamysaaaacqGH9aqpcaqGGaGaae4q
aiaab+gacaqGUbGaae4CaiaabshacaqGHbGaaeOBaiaabshacaqGGa
GaaeypaiaabccacaqGsbGaaeyzaiaabohacaqGPbGaae4Caiaabsha
caqGHbGaaeOBaiaabogacaqGLbGaaeiiaiaabIcacaqGsbGaaeykaa
aa@51E4@
Where: V = Electric potential; I = Electric current
Electric Appliances They are connected in parallel combination.
Heater wire: Has a high melting point. Having high resistance. Made of Nichrome alloy = Nickel (Ni) + Copper (Cu) Electric Bulb: The filament is made of Tungsten. Have a high melting point. Having high resistance. Having high temperature as well. Important Instrument Galvanometer: Used to detect the weak electric current and their direction. It is connected in a series combination. It is more sensitive to electric current than Ammeter. Ammeter: Used to measure strong electric current. It is connected in a series combination. Have low resistance. For Ideal Ammeter resistance must be zero (R = 0). Voltmeter: Used to measure voltage (Potential difference) It is connected in parallel combination. Have high resistance. For Ideal Voltmeter resistance must be infinite (R = ∞). Rectifier: Convert AC (Alternating Current) to D.C (Direct Current). Inverter: Conversion of Galvanometer into Ammeter When we connect a low-resistance wire in parallel with a galvanometer, this combination behaves like an ammeter.
Shunt : It is a low-resistance wire connected in parallel with instruments to protect them from heating.
Conversion of Galvanometer into Voltmeter When we connect a high-resistance wire in a series combination with a galvanometer, this combination behaves like a voltmeter.
Electric Power (P) The rate of consumption of energy is called electric power.
Electric power formula:
P = V I =
V
2
R
=
I
2
R
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamiuaiabg2da9iaadAfacaWGjbGaeyypa0ZaaSaaaeaacaWG
wbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOuaaaacqGH9aqpcaWGjb
WaaWbaaSqabeaacaaIYaaaaOGaamOuaaaa@43F9@
Where: P = Electrical Power; V = Electric potential; I = Electric current; R = Resistance
One kilowatt-hour It is a commercial unit of energy.
1 K W h = 1 unit = 3 .6 ×
10
6
J o u l e
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaaGymaiaabccacaWGlbGaam4vaiaadIgacqGH9aqpcaaIXaGa
aeiiaiaabwhacaqGUbGaaeyAaiaabshacaqGGaGaaeypaiaabccaca
qGZaGaaeOlaiaabAdacqGHxdaTcaqGXaGaaeimamaaCaaaleqabaGa
aGOnaaaakiaabccacaWGkbGaam4BaiaadwhacaWGSbGaamyzaaaa@5119@
Formula to find the number of units :
Number of units =
Watt × Hours
100
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaaeOtaiaabwhacaqGTbGaaeOyaiaabwgacaqGYbGaaeiiaiaa
b+gacaqGMbGaaeiiaiaabwhacaqGUbGaaeyAaiaabshacaqGZbGaae
iiaiaab2dacaqGGaWaaSaaaeaacaqGxbGaaeyyaiaabshacaqG0bGa
aeiiaiabgEna0kaabccacaqGibGaae4BaiaabwhacaqGYbGaae4Caa
qaaiaaigdacaaIWaGaaGimaaaaaaa@5668@
Note : The S.I. unit of KWh is Joule (J) .
Joule’s law of Heating Effect formula:
H = P t = V I t =
V
2
R
× t =
I
2
R t
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamisaiabg2da9iaadcfacaWG0bGaeyypa0JaamOvaiaadMea
caWG0bGaeyypa0ZaaSaaaeaacaWGwbWaaWbaaSqabeaacaaIYaaaaa
GcbaGaamOuaaaacqGHxdaTcaWG0bGaeyypa0JaamysamaaCaaaleqa
baGaaGOmaaaakiaadkfacaWG0baaaa@4BC7@
Where: H = Heat; P = Electrical Power; t = Time; V = Electric potential; R = Resistance
Rest and motion are not absolute terms, they are relative terms. For one person something is rest, while for another the same thing may be in motion. Distance and Displacement Distance
• Always positive
• Total path length
• The S.I. unit distance is meter (m)
• Scalar quantity (Only magnitude)
s = v × t
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaam4Caiabg2da9iaadAhacqGHxdaTcaWG0baaaa@3F25@
Where: s = Distance; v = Speed; t = Time
Displacement
• Can be positive, negative, or zero
• The shortest distance between two points
• The S.I. unit displacement is meter (m)
• Vector quantity (Magnitude as well as direction)
s
→
=
v
→
× t
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaWaa8HaaeaacaWGZbaacaGLxdcacqGH9aqpdaWhcaqaaiaadAha
aiaawEniaiabgEna0kaadshaaaa@428D@
Where: s = Displacement; v = Velocity; t = Time ; (🠪) = Represents vector
Example of Scalar quantities: Speed Distance Time Mass Energy Work Power Pressure Electric charge Electric current Electric potential etc… Example of Vector quantities: Velocity Displacement Acceleration Force Linear momentum Angular momentum Torque Electric field Magnetic field etc… Average Speed Formula :
v
a v g
=
Total distance (s
t o t a l
)
Total time (t
t o t a l
)
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamODamaaBaaaleaacaWGHbGaamODaiaadEgaaeqaaOGaeyyp
a0ZaaSaaaeaacaqGubGaae4BaiaabshacaqGHbGaaeiBaiaabccaca
qGKbGaaeyAaiaabohacaqG0bGaaeyyaiaab6gacaqGJbGaaeyzaiaa
bccacaqGOaGaae4CamaaBaaaleaacaWG0bGaam4BaiaadshacaWGHb
GaamiBaaqabaGccaqGPaaabaGaaeivaiaab+gacaqG0bGaaeyyaiaa
bYgacaqGGaGaaeiDaiaabMgacaqGTbGaaeyzaiaabccacaqGOaGaae
iDamaaBaaaleaacaWG0bGaam4BaiaadshacaWGHbGaamiBaaqabaGc
caqGPaaaaaaa@6381@
The S.I. unit of average speed is meter/second (m/s) .
Average Velocity Formula :
v
→
a v g
=
Total displacement (
s
→
t o t a l
)
Total time (t
t o t a l
)
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaWaa8HaaeaacaWG2baacaGLxdcadaWgaaWcbaGaamyyaiaadAha
caWGNbaabeaakiabg2da9maalaaabaGaaeivaiaab+gacaqG0bGaae
yyaiaabYgacaqGGaGaaeizaiaabMgacaqGZbGaaeiCaiaabYgacaqG
HbGaae4yaiaabwgacaqGTbGaaeyzaiaab6gacaqG0bGaaeiiaiaabI
cadaWhcaqaaiaabohaaiaawEniamaaBaaaleaadaWgaaadbaGaamiD
aiaad+gacaWG0bGaamyyaiaadYgaaeqaaaWcbeaakiaacMcaaeaaca
qGubGaae4BaiaabshacaqGHbGaaeiBaiaabccacaqG0bGaaeyAaiaa
b2gacaqGLbGaaeiiaiaabIcacaqG0bWaaSbaaSqaaiaadshacaWGVb
GaamiDaiaadggacaWGSbaabeaakiaacMcaaaaaaa@6ADC@
The S.I. unit of average velocity is meter/second (m/s) .
Acceleration Formula :
a
→
=
Change in velocity ( Δ
v
→
)
Rate or time (t)
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaWaa8HaaeaacaWGHbaacaGLxdcacqGH9aqpdaWcaaqaaiaaboea
caqGObGaaeyyaiaab6gacaqGNbGaaeyzaiaabccacaqGPbGaaeOBai
aabccacaqG2bGaaeyzaiaabYgacaqGVbGaae4yaiaabMgacaqG0bGa
aeyEaiaabccacaqGOaGaeyiLdq0aa8HaaeaacaqG2baacaGLxdcaca
GGPaaabaGaaeOuaiaabggacaqG0bGaaeyzaiaabccacaqGVbGaaeOC
aiaabccacaqG0bGaaeyAaiaab2gacaqGLbGaaeiiaiaabIcacaqG0b
Gaaeykaaaaaaa@604E@
The S.I. unit of acceleration is meter per square second (m/s2 ) .
Reason of Acceleration :Increase in speed Decrease in speed Change in direction Equation of Motion These equations are applicable in the case of uniform acceleration (constant acceleration).
▪ 1st Equation : Velocity-Time equation
v = u + a . t
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamODaiabg2da9iaadwhacqGHRaWkcaWGHbGaaiOlaiaadsha
aaa@3F8A@
▪ 2nd Equation : Displacement-Time equation
s = u . t +
1
2
a .
t
2
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaam4Caiabg2da9iaadwhacaGGUaGaamiDaiabgUcaRmaalaaa
baGaaGymaaqaaiaaikdaaaGaamyyaiaac6cacaWG0bWaaWbaaSqabe
aacaaIYaaaaaaa@43A2@
▪ 3rd Equation : Velocity-Displacement equation
v
2
=
u
2
+ 2 a . s
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamODamaaCaaaleqabaGaaGOmaaaakiabg2da9iaadwhadaah
aaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaamyyaiaac6cacaWGZb
aaaa@422B@
Where: u = Initial velocity; v = Final velocity; a = acceleration; s = Displacement; t = Time
Newton’s Laws of Motion: ▪ 1st Laws of Motion : Law of inertia (Inertia means opposed to change).
I = m
r
2
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamysaiabg2da9iaad2gacaWGYbWaaWbaaSqabeaacaaIYaaa
aaaa@3DC2@
The S.I. unit of Inertia is Kg-m2 .
▪ 2nd Laws of Motion : Rate of change of momentum .
F =
Δ
P
→
t
=
Δ m .
v
→
t
= m .
Δ
v
→
t
= m .
a
→
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamOraiabg2da9maalaaabaGaeyiLdq0aa8HaaeaacaWGqbaa
caGLxdcaaeaacaWG0baaaiabg2da9maalaaabaGaeyiLdqKaamyBai
aac6cadaWhcaqaaiaadAhaaiaawEniaaqaaiaadshaaaGaeyypa0Ja
amyBaiaac6cadaWcaaqaaiabgs5aenaaFiaabaGaamODaaGaay51Ga
aabaGaamiDaaaacqGH9aqpcaWGTbGaaiOlamaaFiaabaGaamyyaaGa
ay51Gaaaaa@54BB@
The S.I. unit of force is Newton (N) or Kg-m/s2 .
The CGS unit of force is Dyne or gm-cm/s2 .
1
Newton = 10
5
Dyne
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaaGymaiaabccacaqGobGaaeyzaiaabEhacaqG0bGaae4Baiaa
b6gacaqGGaGaaeypaiaabccacaqGXaGaaeimamaaCaaaleqabaGaaG
ynaaaakiaabccacaqGebGaaeyEaiaab6gacaqGLbaaaa@48A9@
Where: I = Moment of Inertia; m = Mass; r = Distance; F = Force; P = Linear momentum; t = Time; v = Velocity; a = Acceleration
▪ 3rd Laws of Motion : Action-reaction law .
Equal and opposite forces.
Impulse In a very short time (∆t), if an external force acts on a body is known as an impulse and it is a change in momentum (∆P).
Impulse formula :
J = Δ P = m . Δ v = F . Δ t
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamOsaiabg2da9iabgs5aejaadcfacqGH9aqpcaWGTbGaaiOl
aiabgs5aejaadAhacqGH9aqpcaWGgbGaaiOlaiabgs5aejaadshaaa
a@471C@
Where: J = Impulse; ∆P = Change in linear momentum; m = Mass; F = Force; P = Linear momentum; t = Time; v = Velocity
Gravitational force formula:
F = G
m
1
×
m
2
r
2
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamOraiabg2da9iaadEeadaWcaaqaaiaad2gadaWgaaWcbaGa
aGymaaqabaGccqGHxdaTcaWGTbWaaSbaaSqaaiaaikdaaeqaaaGcba
GaamOCamaaCaaaleqabaGaaGOmaaaaaaaaaa@4387@
Where: F = Force; G = Universal gravitational constant; m = Mass; r = Centre distance between two masses
Where; Value of G = 6.67 ×
10
− 11
N −
m
2
K
g
2
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaae4vaiaabIgacaqGLbGaaeOCaiaabwgacaqG7aGaaeiiaiaa
bAfacaqGHbGaaeiBaiaabwhacaqGLbGaaeiiaiaab+gacaqGMbGaae
iiaaba1haaaaaapeGaae4raiaabccacaqG9aGaaeiiaiaaiAdacaGG
UaGaaGOnaiaaiEdacqGHxdaTcaaIXaGaaGimamaaCaaaleqabaGaey
OeI0IaaGymaiaaigdaaaGccaqGGaWaaSaaaeaacaWGobGaeyOeI0Ia
amyBamaaCaaaleqabaGaaGOmaaaaaOqaaiaadUeacaWGNbWaaWbaaS
qabeaacaaIYaaaaaaaaaa@5AB0@
Acceleration due to gravity formula:
g =
G M
R
2
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaam4zaiabg2da9maalaaabaGaam4raiaad2eaaeaacaWGsbWa
aWbaaSqabeaacaaIYaaaaaaaaaa@3E7C@
Where: g = Gravity; G = Universal gravitational constant; M = Mass of Planet; R = Radius of Planet
Where;
g
E a r t h
= 9.8
m/s
2
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaam4zamaaBaaaleaacaWGfbGaamyyaiaadkhacaWG0bGaamiA
aaqabaGccqGH9aqpcaaI5aGaaiOlaiaaiIdacaqGGaGaaeyBaiaab+
cacaqGZbWaaWbaaSqabeaacaaIYaaaaaaa@462D@
g
M o o n
=
g
E a r t h
6
= 1.63
m/s
2
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaam4zamaaBaaaleaacaWGnbGaam4Baiaad+gacaWGUbaabeaa
kiabg2da9maalaaabaGaam4zamaaBaaaleaacaWGfbGaamyyaiaadk
hacaWG0bGaamiAaaqabaaakeaacaaI2aaaaiabg2da9iaaigdacaGG
UaGaaGOnaiaaiodacaqGGaGaaeyBaiaab+cacaqGZbWaaWbaaSqabe
aacaaIYaaaaaaa@4D85@
Projectile Motion
The formula for Horizontal Range :
R =
u
2
Sin 2 θ
g
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamOuaiabg2da9maalaaabaGaamyDamaaCaaaleqabaGaaGOm
aaaakiGacofacaGGPbGaaiOBaiaaikdacqaH4oqCaeaacaWGNbaaaa
aa@430C@
Where: R = Horizontal range; u = Speed of an object; g = Gravity ; θ = Inclination angle
Hint : For maximum horizontal range, θ = 45°
The formula for Maximum Height :
H =
u
2
Sin
2
θ
2 g
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamisaiabg2da9maalaaabaGaamyDamaaCaaaleqabaGaaGOm
aaaakiGacofacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiabeI
7aXbqaaiaaikdacaWGNbaaaaaa@43F5@
Where: H = Vertical height; u = Speed of an object; g = Gravity
Hint : For maximum height, θ = 90°
Friction It is the electromagnetic force in nature. Always oppose the relative motion. Friction formula for plane surface :
f = μ R
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamOzaiabg2da9iabeY7aTjaadkfaaaa@3D9A@
Where: f = Frictional force; μ = Coefficient of friction; R = Normal reaction force
Friction formula for inclined surface :
f = μ R = μ ( m g Cos θ )
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamOzaiabg2da9iabeY7aTjaadkfacqGH9aqpcqaH8oqBcaGG
OaGaamyBaiaadEgaciGGdbGaai4BaiaacohacqaH4oqCcaGGPaaaaa@47F6@
Where: f = Frictional force; μ = Coefficient of friction; R = Normal reaction force ; m = Mass of an object; g = Gravity ; θ = Inclination angle
Hint : Put θ = 0° for the Plane surface .
Torque (τ) The moment of force is called torque. Torque formula :
τ = F × r
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaeqiXdqNaeyypa0JaaeiiaiaabAeacaqGGaGaey41aqRaaeii
aiaabkhaaaa@41A5@
Where: τ (tau) = Torque; F = Force; r = Perpendicular distance
The S.I. unit of torque is Newton-meter (N-m) .
Angular Momentum Formula :
J = I ω
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamOsaiabg2da9iaadMeacqaHjpWDaaa@3D8C@
Where: J = Angular momentum; I = Moment of Inertia; ω = Angular velocity
The S.I. unit of angular momentum is Kilogram-meter per second (Kg-m2 /s) .
Mechanical Work It is a scalar product (dot product) of force and displacement. Work formula :
W =
F
→
·
s
→
= FsCos θ
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaam4vaiabg2da9maaFiaabaGaamOraaGaay51GaGaaeiiaiab
l+y6NjaabccadaWhcaqaaiaabohaaiaawEniaiaabccacaqG9aGaae
iiaiaabAeacaqGZbGaae4qaiaab+gacaqGZbGaeqiUdehaaa@4C06@
Where: W = Work; F = Force; s = Displacement; θ = Angle between force and displacement
The S.I. unit of Work is Newton-meter (N-m) or Joule (J) .
Work can be positive, negative, or zero. Work done by a force in circular motion is always zero. W = mgH , in case of vertical displacement by any object.As per 3rd equation of motion :
W =
1
2
m (
v
2
−
u
2
)
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaam4vaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaamyB
aiaacIcacaWG2bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyDam
aaCaaaleqabaGaaGOmaaaakiaacMcaaaa@4398@
Where: W = Work; m = Mass of an object; v = final velocity ; u = initial velocity
Mechanical Power The rate of doing work is called mechanical power.
Power formula :
P =
W
t
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamiuaiabg2da9maalaaabaGaam4vaaqaaiaadshaaaaaaa@3CDC@
Where: P = Mechanical power; W = Work; t = Rate or time
Note: 1 Horse Power (H.P) = 746 Watt
The S.I. unit of Power is Joule/second (J/s) or Watt .
Another formula of Power :
P = F × v
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamiuaiabg2da9iaabccacaWGgbGaey41aqRaamODaaaa@3F77@
Where: P = Power; F = Force; v = Velocity
Energy Energy can neither be created nor be destroyed, it can only change its form. The S.I. unit of any form of Energy is Joule (J) .
Kinetic Energy Formula :
K . E =
1
2
m
v
2
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaam4saiaac6cacaWGfbGaeyypa0ZaaSaaaeaacaaIXaaabaGa
aGOmaaaacaWGTbGaamODamaaCaaaleqabaGaaGOmaaaaaaa@40CB@
Where: m = Mass; v = Velocity
The kinetic energy in terms of linear momentum (formula):
K . E =
P
2
2 m
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaam4saiaac6cacaWGfbGaeyypa0ZaaSaaaeaacaWGqbWaaWba
aSqabeaacaaIYaaaaaGcbaGaaGOmaiaad2gaaaaaaa@3FF4@
Where: P = Linear momentum; m = Mass
Potential Energy Formula :
P . E = m g h
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamiuaiaac6cacaWGfbGaeyypa0JaamyBaiaadEgacaWGObaa
aa@3F3E@
Where: m = Mass; g = Gravity; h = Vertical height
Note : Formula for Potential Energy of Spring:
P . E =
1
2
K
x
2
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamiuaiaac6cacaWGfbGaeyypa0ZaaSaaaeaacaaIXaaabaGa
aGOmaaaacaWGlbGaamiEamaaCaaaleqabaGaaGOmaaaaaaa@40B2@
Where: K = Spring constant; x = Compressed or elongated distance
Temperature conversion formula:
° C
5
=
° F − 32
9
=
K − 273.15
5
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaWaaSaaaeaacqGHWcaScaWGdbaabaGaaGynaaaacqGH9aqpdaWc
aaqaaiabgclaWkaadAeacqGHsislcaaIZaGaaGOmaaqaaiaaiMdaaa
Gaeyypa0ZaaSaaaeaacaWGlbGaeyOeI0IaaGOmaiaaiEdacaaIZaGa
aiOlaiaaigdacaaI1aaabaGaaGynaaaaaaa@4B8F@
Where: ℃ = Degree Centigrade; ℉ = Degree Fahrenheit; K = Kelvin
Important Points : Normal human body temperature = 37 ℃ or 98.6 ℉ or 310.15 K -40 ℃ = -40 ℉ Minimum possible temperature = 0 Kelvin or -273.15 ℃ or 459.67 ℉ Absolute zero temperature = 0 Kelvin At 0 Kelvin temperature, the vibration of an atom freezes. Heat It is a form of energy whose S.I. unit is Joule (J) .
There are two types of heat in nature: Latent heat and Sensible heat .
Latent Heat : All heat energy goes into state (solid, liquid, and gas) change with no change in temperature.
Latent Heat Formula:
Q = m ( L . H )
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamyuaiabg2da9iaad2gacaGGOaGaamitaiaac6cacaWGibGa
aiykaaaa@3F95@
Where: Q = Heat; m = Mass of substance; L.H = Latent Heat
The S.I. unit of Latent Heat is Joule per Kg (J/kg) .
Sensible Heat : The state remains the same with temperature change.
Sensible Heat Formula :
Q = m c Δ T
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamyuaiabg2da9iaad2gacaWGJbGaeyiLdqKaamivaaaa@3F14@
Where: Q = Heat; m = Mass of substance; c = Heat capacity; ∆T = Change in temperature
Note : The S.I. unit of Heat Capacity (c) is Joule/Kg-Kelvin .
A wave occurs due to disturbance in any medium.
Types of Waves Electromagnetic waves: They do not require any material medium to travel, i.e., they can travel even in a vacuum. Examples : Radio waves, Microwave, Infrared waves, Visible light, Ultraviolet rays, X-rays, γ-raysLight is an example of an electromagnetic wave. Mechanical Waves: They require a material medium to travel, i.e., they cannot travel in a vacuum. Types of Mechanical waves: Longitudinal waves This wave is generated due to the parallel vibration of particles of medium to the wave direction. But particles of the medium do not travel, only energy transfers from one point to another. Example : Sound wave, Wave in springTransverse Waves This wave is generated due to the perpendicular vibration of particles of the medium. But particles of the medium do not travel from one place to another, only energy transfers from one point to another. Example : Waves in string.Sound Density effect on the speed of sound:
Speed of sound in solid ∝
1
Density
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaae4uaiaabchacaqGLbGaaeyzaiaabsgacaqGGaGaae4Baiaa
bAgacaqGGaGaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaqGGaGaae
yAaiaab6gacaqGGaGaae4Caiaab+gacaqGSbGaaeyAaiaabsgacaqG
Gaaeaaaaaaaaa8qacqGHDisTcaqGGaWaaSaaaeaacaaIXaaabaWaaO
aaaeaacaqGebGaaeyzaiaab6gacaqGZbGaaeyAaiaabshacaqG5baa
leqaaaaaaaa@5785@
Stiffness effect on the speed of sound:
Stiffness ∝ Speed of sound
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaae4uaiaabshacaqGPbGaaeOzaiaabAgacaqGUbGaaeyzaiaa
bohacaqGZbGaaeiiaabaaaaaaaaapeGaeyyhIuRaaeiiaiaabofaca
qGWbGaaeyzaiaabwgacaqGKbGaaeiiaiaab+gacaqGMbGaaeiiaiaa
bohacaqGVbGaaeyDaiaab6gacaqGKbaaaa@50AD@
Note : The speed of sound increases with an increase in stiffness.
Frequency The number of cycles in one second is called frequency.
Frequency formula:
f =
1
T
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamOzaiabg2da9maalaaabaGaaGymaaqaaiaadsfaaaaaaa@3CB3@
Where : f = Frequency; T = Time in second
Note : The S.I. unit of frequency is Hertz (Hz) or Per second (1/s).
Time Period The time taken in one complete cycle is called time period.
T =
1
f
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamivaiabg2da9maalaaabaGaaGymaaqaaiaadAgaaaaaaa@3CB3@
Wavelength The distance between two consecutive crests or troughs is called wavelength (λ). SI unit of wavelength (λ) is a meter. Another unit can be Angstrom (Symbol- Å), Nano-meter (Symbol- nm), etc. Amplitude The maximum displacement from a mean position is called amplitude. Velocity of a wave (formula)
v = f × λ
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamODaiabg2da9iaadAgacqGHxdaTcqaH7oaBaaa@3FD5@
Or
v =
λ
T
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamODaiabg2da9maalaaabaGaeq4UdWgabaGaamivaaaaaaa@3DBC@
Where : υ = Velocity of wave; f = frequency; λ = wave length; T = time-period
Audible frequency range For the human ear: 20 Hz to 20000 Hz Sound frequency less than 20 Hz: Infrasonic sound Sound frequency greater than 20,000 Hz: Ultrasonic sound Loudness of sound Depends on the amplitude of the vibration of vibrating objects.
Loudness ∝
(Amplitude)
2
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaaeitaiaab+gacaqG1bGaaeizaiaab6gacaqGLbGaae4Caiaa
bohacaqGGaaeaaaaaaaaa8qacqGHDisTcaqGGaGaaeikaiaabgeaca
qGTbGaaeiCaiaabYgacaqGPbGaaeiDaiaabwhacaqGKbGaaeyzaiaa
bMcadaahaaWcbeqaaiaaikdaaaaaaa@4DE8@
The unit of loudness is Decibel (dB) or Bel . Mach number formula
Mach Number =
Speed of Object
Speed of Sound
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaaeytaiaabggacaqGJbGaaeiAaiaabccacaqGobGaaeyDaiaa
b2gacaqGIbGaaeyzaiaabkhacaqGGaGaaeypaiaabccadaWcaaqaai
aabofacaqGWbGaaeyzaiaabwgacaqGKbGaaeiiaiaab+gacaqGMbGa
aeiiaiaab+eacaqGIbGaaeOAaiaabwgacaqGJbGaaeiDaaqaaiaabo
facaqGWbGaaeyzaiaabwgacaqGKbGaaeiiaiaab+gacaqGMbGaaeii
aiaabofacaqGVbGaaeyDaiaab6gacaqGKbaaaaaa@5E1A@
Note : If Mach number = 1 , Speed of an object = Speed of sound .
Energy of Wave (formula)
E =
h c
λ
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb
stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi
s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr
Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F
irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa
GcbaGaamyraiabg2da9maalaaabaGaamiAaiaadogaaeaacqaH7oaB
aaaaaa@3E87@
Where : E = Energy of a wave; h = Planck’s constant; c = Speed of light in vacuum
Dispersion of light The splitting of white light into seven colors is called dispersion of light. Supersonic objects If the speed of an object is greater than the speed of sound then the object is called a supersonic object. If the speed of a missile is between 1.2 to 5 Mach then it is called a supersonic missile. Missile Range 1.2 to 5 Mach⇒ Supersonic missile Greater than 5 Mach⇒ Hypersonic missile Important points :For echo minimum distance should be 17.15 meters Echo works on the law of reflection of sound. Persistence of sound = 1/10 second Persistence of eye vision = 1/16 second A fathometer is used to find sea depth. Full form of SONAR = So und N avigation A nd R anging Electromagnetic waves do not have any charge.