Now all notes are available for Online Reading...!
Notes
Physics

In General Science, we study three core subjects: Physics, Chemistry, and Biology. If you are preparing for any competitive exam, whether it is SSC (Staff Selection Commission), RRB (Railway Recruitment Board), or any other one-day exam, Physics holds significant importance.

We have divided this article into two sections: Read Online & Formula Glimpse.
Read Online: In this section, we’ve broken down the Physics Notes PDF file into a chapter-wise table. If you have time before your exam and want to dive deeper into each topic, you can explore this section for detailed reading.

Formula Glimpse: If your exam is approaching soon and you need a quick revision, this section is for you. It highlights key points and important formulas essential for rapid review, carefully selected from the Physics Notes PDF file.

Note: If you prefer to read the notes in Hindi, please use the Read Online section.

Read Online

The Physics Notes PDF is too large to upload as a single document, which might cause issues with loading.

TopicPhysics Notes PDF
LanguageBilingual
Important forSSC | Railway | Other one-day exams
ReferenceMr. Ankur Sir (CareerWill App)
Written byJay Prakash

Formula Glimpse

Electricity

  • The size of an atom is measured in Angstrom (Å).
1 Å= 10 10 m MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaaGymaiaabccaqaaaaaaaaaWdbiaahwmacqGH9aqpcaaIXaGa aGimamaaCaaaleqabaGaeyOeI0IaaGymaiaaicdaaaGccaWGTbaaaa@41EE@
Where: Å = Angstrom
  • The size of the nucleus is measured in the Fermi meter (fm).
1 fm = 10 15 m MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaaGymaiaabc caqaaaaaaaaaWdbiaadAgacaWGTbGaaiiOaiabg2da9iaaigdacaaI WaWaaWbaaSqabeaacqGHsislcaaIXaGaaGynaaaakiaad2gaaaa@409A@
Where: fm = fermi meter

Electric Potential

The work done to bring a unit positive test charge from infinity (∞) to a point in an electric field is called electric potential at that point (P).

Electric potential formula:
V= W q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamOvaiabg2 da9maalaaabaGaae4vaaqaaiaadghadaWgaaWcbaGaaGimaaqabaaa aaaa@3AB6@
Where: V = Electric Potential; W = Work Done; q0 = Unit Positive Charge

The unit of electric potential is joule per coulomb or volt.

Joule (J) Coulomb (C) =Volt(V) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGkbGaam4BaiaadwhacaWGSbGaamyzaiaabccacaqGOaGaaeOsaiaa bMcaaeaacaWGdbGaam4BaiaadwhacaWGSbGaam4Baiaad2gacaWGIb GaaeiiaiaabIcacaqGdbGaaeykaaaacqGH9aqpcaWGwbGaam4Baiaa dYgacaWG0bGaaiikaiaadAfacaGGPaaaaa@4DA6@
Potential difference formula:
ΔV=  V A   V B = W q MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaam Ovaiabg2da9iaabccacaWGwbWaaSbaaSqaaiaadgeaaeqaaOGaeyOe I0IaaeiiaiaadAfadaWgaaWcbaGaamOqaaqabaGccqGH9aqpdaWcaa qaaiaabEfaaeaacaWGXbaaaaaa@4230@
Where: ΔV = Potential Difference; VA = Higher Potential; VB = Lower Potential; W = Work; q = Charge
Note: The formula for electric potential and potential difference is the same.

Electric Current

The flow rate of electric charge in a particular direction is called electric current.

Electric current formula:
I =  Q t MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaaeysaiaabc cacaqG9aGaaeiiamaalaaabaGaaeyuaaqaaiaabshaaaaaaa@3ACD@
Where: I = Electric current; Q = Charge; t = Time

The unit of electric current is Coulomb per second or Ampere (A).

Coulomb (C) Second (s) = Ampere (A) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca qGdbGaae4BaiaabwhacaqGSbGaae4Baiaab2gacaqGIbGaaeiiaiaa bIcacaqGdbGaaeykaaqaaiaabofacaqGLbGaae4yaiaab+gacaqGUb GaaeizaiaabccacaqGOaGaae4CaiaabMcaaaGaeyypa0Jaaeiiaiaa bgeacaqGTbGaaeiCaiaabwgacaqGYbGaaeyzaiaabccacaqGOaGaae yqaiaabMcaaaa@5187@

Note:

  • Current flow from higher potential to lower potential.
  • The electric current flows in the opposite direction of the flow of electrons.
  • For a flow of electric current., there should be a potential difference across the ends of the wire.

Electric Resistance

It is the property of a material that opposes the current flow, determining how difficult it is for electrons to move through it.

Resistance is defined by Ohm’s Law, which states:

R =  V I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabc cacaqG9aGaaeiiamaalaaabaGaaeOvaaqaaiaabMeaaaaaaa@3AB0@
Where: R = Resistance; V = Electrical potential; I = Electrical current

The unit of Resistance is ohms (Ω).

Resistivity

Depends on material and temperature. It does not depend on the length or cross-sectional area. its value remains constant for specific materials.

Resistivity formula:
ρ =  × A L MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaae iiaiaab2dacaqGGaWaaSaaaeaacaqGsbGaaeiiaiabgEna0kaabcca caqGbbaabaGaamitaaaaaaa@3FBD@
Where: ρ = Resistivity; R = Resistance; L = Length of wire; A = Cross-sectional area

The unit of resistivity is ohm-meter (Ω-m).

Conductance

The ability of a material to allow the flow of electric current through it. It is the inverse of resistance and measures how easily electrons can move through a conductor. Conductance is represented by the symbol 𝐺.

The relationship between conductance and resistance is:

G= 1 R MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaam4raiabg2da9maalaaabaGaaGymaaqaaiaadkfaaaaaaa@3CA0@
Where: G = Conductance; R = Resistance

The unit of conductance is ohm-1-1) or mho or Siemens.

1 ohm =oh m 1 = Ω 1 =mho=Siemens MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaam4BaiaadIgacaWGTbaaaiabg2da9iaad+gacaWGObGa amyBamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da9iabfM6axn aaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da9iaad2gacaWGObGa am4Baiabg2da9iaadofacaWGPbGaamyzaiaad2gacaWGLbGaamOBai aadohaaaa@4F3F@

Note: A higher conductance means lower resistance and better current flow.

Conductivity

Ability to conduct electric current, showing how easily electrons flow through it. It is the inverse of resistivity and depends on factors like material composition and temperature.

Conductivity formula:
σ =  1 ρ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaae iiaiaab2dacaqGGaWaaSaaaeaacaaIXaaabaGaeqyWdihaaaaa@3C74@
Where: σ = Conductivity; ρ = Resistivity

The conductivity unit is ohm-1/meter (Ω-1/m), mho/meter (mho/m), or Siemens/meter (S/m).

Ω 1 m = mho m = Siemens m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaWaaSGaaeaacq qHPoWvdaahaaWcbeqaaiabgkHiTiaaigdaaaaakeaacaWGTbaaaiab g2da9maaliaabaGaamyBaiaadIgacaWGVbaabaGaamyBaaaacqGH9a qpdaWccaqaaiaabofacaqGPbGaaeyzaiaab2gacaqGLbGaaeOBaiaa bohaaeaacaWGTbaaaaaa@47E0@

Temperature Effect on Resistance

  • Due to an increase in temperature resistance may increase or decrease because it depends on the material.
    • For conductor: If the temperature increases () → resistance increases ()
    • For semiconductors: If the temperature increases () → resistance decreases ()
  • At 0° Kelvin (- 273.15°C), the conductance of the semiconductor becomes zero.
  • Superconductor: When the resistance of a material becomes almost zero at extremely low temperatures, that material becomes a superconductor.
  • At 4.2 Kelvin (-268.8 °C)., mercury behaves like a superconductor.

Fuse wire

  • Low melting point wire.
  • High resistance (fragile wire).
  • Made up of Lead (Pb) + Tin (Sn) alloy wire

Combination of Resistance

Series Combination:

Equivalent Resistance formula for series combination:

R eq. = R 1 + R 2 + R 3 + MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGLbGaamyCaiaac6caaeqaaOGaeyypa0JaamOuamaaBaaa leaacaaIXaaabeaakiabgUcaRiaadkfadaWgaaWcbaGaaGOmaaqaba GccqGHRaWkcaWGsbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaiOl aiaac6cacaGGUaaaaa@44DC@
Where: Req. = Equivalent resistance

Note: Current remains the same but voltage varies.

V= V 1 + V 2 + V 3 + MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamOvaiabg2 da9iaadAfadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGwbWaaSba aSqaaiaaikdaaeqaaOGaey4kaSIaamOvamaaBaaaleaacaaIZaaabe aakiabgUcaRiaac6cacaGGUaGaaiOlaaaa@4224@
Where: V = Electric potential
Parallel Combination:

Equivalent Resistance formula for parallel combination:

R eq. = 1 R 1 + 1 R 2 + 1 R 3 + MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGLbGaamyCaiaac6caaeqaaOGaeyypa0ZaaSaaaeaacaaI XaaabaGaamOuamaaBaaaleaacaaIXaaabeaaaaGccqGHRaWkdaWcaa qaaiaaigdaaeaacaWGsbWaaSbaaSqaaiaaikdaaeqaaaaakiabgUca RmaalaaabaGaaGymaaqaaiaadkfadaWgaaWcbaGaaG4maaqabaaaaO Gaey4kaSIaaiOlaiaac6cacaGGUaaaaa@473D@
Where: Req. = Equivalent resistance

Note: Current varies but voltage remains the same.

I= I 1 + I 2 + I 3 + MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 da9iaadMeadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGjbWaaSba aSqaaiaaikdaaeqaaOGaey4kaSIaamysamaaBaaaleaacaaIZaaabe aakiabgUcaRiaac6cacaGGUaGaaiOlaaaa@41F0@
Where: I = Electric current

Special Note: If ‘n’ number of wires is given, where, n = 1, 2, 3, 4…, and each wire has the same resistance is ‘R’. Then:

  • For series combination:
R eq. =n.R MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamOuamaaBaaaleaacaWGLbGaamyCaiaac6caaeqaaOGaeyyp a0JaamOBaiaac6cacaWGsbaaaa@403D@
  • For parallel combination:
R eq. = R n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamOuamaaBaaaleaacaWGLbGaamyCaiaac6caaeqaaOGaeyyp a0ZaaSaaaeaacaWGsbaabaGaamOBaaaaaaa@3F9B@

Ohm’s Law

  • Valid at constant temperature.
  • Valid only for conductors.
  • At a given temperature the ratio of potential difference and electric current remains the same.
V I = Constant = Resistance (R) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaWaaSaaaeaacaWGwbaabaGaamysaaaacqGH9aqpcaqGGaGaae4q aiaab+gacaqGUbGaae4CaiaabshacaqGHbGaaeOBaiaabshacaqGGa GaaeypaiaabccacaqGsbGaaeyzaiaabohacaqGPbGaae4Caiaabsha caqGHbGaaeOBaiaabogacaqGLbGaaeiiaiaabIcacaqGsbGaaeykaa aa@51E4@
Where: V = Electric potential; I = Electric current

Electric Appliances

They are connected in parallel combination.

Heater wire:
  • Has a high melting point.
  • Having high resistance.
  • Made of Nichrome alloy = Nickel (Ni) + Copper (Cu)
Electric Bulb:
  • The filament is made of Tungsten.
  • Have a high melting point.
  • Having high resistance.
  • Having high temperature as well.

Important Instrument

Galvanometer:
  • Used to detect the weak electric current and their direction.
  • It is connected in a series combination.
  • It is more sensitive to electric current than Ammeter.
Ammeter:
  • Used to measure strong electric current.
  • It is connected in a series combination.
  • Have low resistance.
  • For Ideal Ammeter resistance must be zero (R = 0).
Voltmeter:
  • Used to measure voltage (Potential difference)
  • It is connected in parallel combination.
  • Have high resistance.
  • For Ideal Voltmeter resistance must be infinite (R = ∞).
Rectifier:
  • Convert AC (Alternating Current) to D.C (Direct Current).
Inverter:
  • Convert DC to AC

Conversion of Galvanometer into Ammeter

When we connect a low-resistance wire in parallel with a galvanometer, this combination behaves like an ammeter.

Shunt: It is a low-resistance wire connected in parallel with instruments to protect them from heating.

Conversion of Galvanometer into Voltmeter

When we connect a high-resistance wire in a series combination with a galvanometer, this combination behaves like a voltmeter.

Electric Power (P)

The rate of consumption of energy is called electric power.

Electric power formula:
P=VI= V 2 R = I 2 R MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamiuaiabg2da9iaadAfacaWGjbGaeyypa0ZaaSaaaeaacaWG wbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOuaaaacqGH9aqpcaWGjb WaaWbaaSqabeaacaaIYaaaaOGaamOuaaaa@43F9@
Where: P = Electrical Power; V = Electric potential; I = Electric current; R = Resistance

One kilowatt-hour

It is a commercial unit of energy.

1 KWh=1 unit = 3.6× 10 6  Joule MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaaGymaiaabccacaWGlbGaam4vaiaadIgacqGH9aqpcaaIXaGa aeiiaiaabwhacaqGUbGaaeyAaiaabshacaqGGaGaaeypaiaabccaca qGZaGaaeOlaiaabAdacqGHxdaTcaqGXaGaaeimamaaCaaaleqabaGa aGOnaaaakiaabccacaWGkbGaam4BaiaadwhacaWGSbGaamyzaaaa@5119@
Formula to find the number of units:
Number of units =  Watt × Hours 100 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaaeOtaiaabwhacaqGTbGaaeOyaiaabwgacaqGYbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabwhacaqGUbGaaeyAaiaabshacaqGZbGaae iiaiaab2dacaqGGaWaaSaaaeaacaqGxbGaaeyyaiaabshacaqG0bGa aeiiaiabgEna0kaabccacaqGibGaae4BaiaabwhacaqGYbGaae4Caa qaaiaaigdacaaIWaGaaGimaaaaaaa@5668@

Note: The S.I. unit of KWh is Joule (J).

Joule’s law of Heating Effect formula:

H=Pt=VIt= V 2 R ×t= I 2 Rt MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamisaiabg2da9iaadcfacaWG0bGaeyypa0JaamOvaiaadMea caWG0bGaeyypa0ZaaSaaaeaacaWGwbWaaWbaaSqabeaacaaIYaaaaa GcbaGaamOuaaaacqGHxdaTcaWG0bGaeyypa0JaamysamaaCaaaleqa baGaaGOmaaaakiaadkfacaWG0baaaa@4BC7@
Where: H = Heat; P = Electrical Power; t = Time; V = Electric potential; R = Resistance

Motion

  • Rest and motion are not absolute terms, they are relative terms. For one person something is rest, while for another the same thing may be in motion.

Distance and Displacement

Distance

• Always positive

• Total path length

• The S.I. unit distance is meter (m)

• Scalar quantity (Only magnitude)

s=v×t MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaam4Caiabg2da9iaadAhacqGHxdaTcaWG0baaaa@3F25@
Where: s = Distance; v = Speed; t = Time

Displacement

• Can be positive, negative, or zero

• The shortest distance between two points

• The S.I. unit displacement is meter (m)

• Vector quantity (Magnitude as well as direction)

s = v ×t MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaWaa8HaaeaacaWGZbaacaGLxdcacqGH9aqpdaWhcaqaaiaadAha aiaawEniaiabgEna0kaadshaaaa@428D@
Where: s = Displacement; v = Velocity; t = Time; (🠪) = Represents vector

Example of Scalar quantities:

  • Speed
  • Distance
  • Time
  • Mass
  • Energy
  • Work
  • Power
  • Pressure
  • Electric charge
  • Electric current
  • Electric potential etc…

Example of Vector quantities:

  • Velocity
  • Displacement
  • Acceleration
  • Force
  • Linear momentum
  • Angular momentum
  • Torque
  • Electric field
  • Magnetic field etc…

Average Speed Formula:

v avg = Total distance (s total ) Total time (t total ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamODamaaBaaaleaacaWGHbGaamODaiaadEgaaeqaaOGaeyyp a0ZaaSaaaeaacaqGubGaae4BaiaabshacaqGHbGaaeiBaiaabccaca qGKbGaaeyAaiaabohacaqG0bGaaeyyaiaab6gacaqGJbGaaeyzaiaa bccacaqGOaGaae4CamaaBaaaleaacaWG0bGaam4BaiaadshacaWGHb GaamiBaaqabaGccaqGPaaabaGaaeivaiaab+gacaqG0bGaaeyyaiaa bYgacaqGGaGaaeiDaiaabMgacaqGTbGaaeyzaiaabccacaqGOaGaae iDamaaBaaaleaacaWG0bGaam4BaiaadshacaWGHbGaamiBaaqabaGc caqGPaaaaaaa@6381@

The S.I. unit of average speed is meter/second (m/s).

Average Velocity Formula:

v avg = Total displacement ( s total ) Total time (t total ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaWaa8HaaeaacaWG2baacaGLxdcadaWgaaWcbaGaamyyaiaadAha caWGNbaabeaakiabg2da9maalaaabaGaaeivaiaab+gacaqG0bGaae yyaiaabYgacaqGGaGaaeizaiaabMgacaqGZbGaaeiCaiaabYgacaqG HbGaae4yaiaabwgacaqGTbGaaeyzaiaab6gacaqG0bGaaeiiaiaabI cadaWhcaqaaiaabohaaiaawEniamaaBaaaleaadaWgaaadbaGaamiD aiaad+gacaWG0bGaamyyaiaadYgaaeqaaaWcbeaakiaacMcaaeaaca qGubGaae4BaiaabshacaqGHbGaaeiBaiaabccacaqG0bGaaeyAaiaa b2gacaqGLbGaaeiiaiaabIcacaqG0bWaaSbaaSqaaiaadshacaWGVb GaamiDaiaadggacaWGSbaabeaakiaacMcaaaaaaa@6ADC@

The S.I. unit of average velocity is meter/second (m/s).

Acceleration Formula:

a = Change in velocity (Δ v ) Rate or time (t) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaWaa8HaaeaacaWGHbaacaGLxdcacqGH9aqpdaWcaaqaaiaaboea caqGObGaaeyyaiaab6gacaqGNbGaaeyzaiaabccacaqGPbGaaeOBai aabccacaqG2bGaaeyzaiaabYgacaqGVbGaae4yaiaabMgacaqG0bGa aeyEaiaabccacaqGOaGaeyiLdq0aa8HaaeaacaqG2baacaGLxdcaca GGPaaabaGaaeOuaiaabggacaqG0bGaaeyzaiaabccacaqGVbGaaeOC aiaabccacaqG0bGaaeyAaiaab2gacaqGLbGaaeiiaiaabIcacaqG0b Gaaeykaaaaaaa@604E@

The S.I. unit of acceleration is meter per square second (m/s2).

Reason of Acceleration:
  • Increase in speed
  • Decrease in speed
  • Change in direction

Equation of Motion

These equations are applicable in the case of uniform acceleration (constant acceleration).

▪ 1st Equation: Velocity-Time equation

v=u+a.t MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamODaiabg2da9iaadwhacqGHRaWkcaWGHbGaaiOlaiaadsha aaa@3F8A@

▪ 2nd Equation: Displacement-Time equation

s=u.t+ 1 2 a. t 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaam4Caiabg2da9iaadwhacaGGUaGaamiDaiabgUcaRmaalaaa baGaaGymaaqaaiaaikdaaaGaamyyaiaac6cacaWG0bWaaWbaaSqabe aacaaIYaaaaaaa@43A2@

▪ 3rd Equation: Velocity-Displacement equation

v 2 = u 2 +2a.s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamODamaaCaaaleqabaGaaGOmaaaakiabg2da9iaadwhadaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaamyyaiaac6cacaWGZb aaaa@422B@
Where: u = Initial velocity; v = Final velocity; a = acceleration; s = Displacement; t = Time

Newton’s Laws of Motion:

▪ 1st Laws of Motion: Law of inertia (Inertia means opposed to change).

I=m r 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamysaiabg2da9iaad2gacaWGYbWaaWbaaSqabeaacaaIYaaa aaaa@3DC2@

The S.I. unit of Inertia is Kg-m2.

▪ 2nd Laws of Motion: Rate of change of momentum.

F= Δ P t = Δm. v t =m. Δ v t =m. a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamOraiabg2da9maalaaabaGaeyiLdq0aa8HaaeaacaWGqbaa caGLxdcaaeaacaWG0baaaiabg2da9maalaaabaGaeyiLdqKaamyBai aac6cadaWhcaqaaiaadAhaaiaawEniaaqaaiaadshaaaGaeyypa0Ja amyBaiaac6cadaWcaaqaaiabgs5aenaaFiaabaGaamODaaGaay51Ga aabaGaamiDaaaacqGH9aqpcaWGTbGaaiOlamaaFiaabaGaamyyaaGa ay51Gaaaaa@54BB@

The S.I. unit of force is Newton (N) or Kg-m/s2.

The CGS unit of force is Dyne or gm-cm/s2.

1  Newton = 10 5  Dyne MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaaGymaiaabccacaqGobGaaeyzaiaabEhacaqG0bGaae4Baiaa b6gacaqGGaGaaeypaiaabccacaqGXaGaaeimamaaCaaaleqabaGaaG ynaaaakiaabccacaqGebGaaeyEaiaab6gacaqGLbaaaa@48A9@
Where: I = Moment of Inertia; m = Mass; r = Distance; F = Force; P = Linear momentum; t = Time; v = Velocity; a = Acceleration

▪ 3rd Laws of Motion: Action-reaction law.

Equal and opposite forces.

Impulse

In a very short time (∆t), if an external force acts on a body is known as an impulse and it is a change in momentum (∆P).

Impulse formula:
J=ΔP=m.Δv=F.Δt MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamOsaiabg2da9iabgs5aejaadcfacqGH9aqpcaWGTbGaaiOl aiabgs5aejaadAhacqGH9aqpcaWGgbGaaiOlaiabgs5aejaadshaaa a@471C@
Where: J = Impulse; ∆P = Change in linear momentum; m = Mass; F = Force; P = Linear momentum; t = Time; v = Velocity

Gravitational force formula:

F=G m 1 × m 2 r 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamOraiabg2da9iaadEeadaWcaaqaaiaad2gadaWgaaWcbaGa aGymaaqabaGccqGHxdaTcaWGTbWaaSbaaSqaaiaaikdaaeqaaaGcba GaamOCamaaCaaaleqabaGaaGOmaaaaaaaaaa@4387@
Where: F = Force; G = Universal gravitational constant; m = Mass; r = Centre distance between two masses
Where; Value of G = 6.67× 10 11   N m 2 K g 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaae4vaiaabIgacaqGLbGaaeOCaiaabwgacaqG7aGaaeiiaiaa bAfacaqGHbGaaeiBaiaabwhacaqGLbGaaeiiaiaab+gacaqGMbGaae iiaaba1haaaaaapeGaae4raiaabccacaqG9aGaaeiiaiaaiAdacaGG UaGaaGOnaiaaiEdacqGHxdaTcaaIXaGaaGimamaaCaaaleqabaGaey OeI0IaaGymaiaaigdaaaGccaqGGaWaaSaaaeaacaWGobGaeyOeI0Ia amyBamaaCaaaleqabaGaaGOmaaaaaOqaaiaadUeacaWGNbWaaWbaaS qabeaacaaIYaaaaaaaaaa@5AB0@

Acceleration due to gravity formula:

g= GM R 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaam4zaiabg2da9maalaaabaGaam4raiaad2eaaeaacaWGsbWa aWbaaSqabeaacaaIYaaaaaaaaaa@3E7C@
Where: g = Gravity; G = Universal gravitational constant; M = Mass of Planet; R = Radius of Planet

Where;

g Earth =9.8  m/s 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaam4zamaaBaaaleaacaWGfbGaamyyaiaadkhacaWG0bGaamiA aaqabaGccqGH9aqpcaaI5aGaaiOlaiaaiIdacaqGGaGaaeyBaiaab+ cacaqGZbWaaWbaaSqabeaacaaIYaaaaaaa@462D@ g Moon = g Earth 6 =1.63  m/s 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaam4zamaaBaaaleaacaWGnbGaam4Baiaad+gacaWGUbaabeaa kiabg2da9maalaaabaGaam4zamaaBaaaleaacaWGfbGaamyyaiaadk hacaWG0bGaamiAaaqabaaakeaacaaI2aaaaiabg2da9iaaigdacaGG UaGaaGOnaiaaiodacaqGGaGaaeyBaiaab+cacaqGZbWaaWbaaSqabe aacaaIYaaaaaaa@4D85@

Projectile Motion

The formula for Horizontal Range:
R= u 2 Sin2θ g MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamOuaiabg2da9maalaaabaGaamyDamaaCaaaleqabaGaaGOm aaaakiGacofacaGGPbGaaiOBaiaaikdacqaH4oqCaeaacaWGNbaaaa aa@430C@
Where: R = Horizontal range; u = Speed of an object; g = Gravity; θ = Inclination angle
Hint: For maximum horizontal range, θ = 45°
The formula for Maximum Height:
H= u 2 Sin 2 θ 2g MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamisaiabg2da9maalaaabaGaamyDamaaCaaaleqabaGaaGOm aaaakiGacofacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiabeI 7aXbqaaiaaikdacaWGNbaaaaaa@43F5@
Where: H = Vertical height; u = Speed of an object; g = Gravity
Hint: For maximum height, θ = 90°

Friction

  • It is the electromagnetic force in nature.
  • Always oppose the relative motion.
Friction formula for plane surface:
f=μR MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamOzaiabg2da9iabeY7aTjaadkfaaaa@3D9A@
Where: f = Frictional force; μ = Coefficient of friction; R = Normal reaction force
Friction formula for inclined surface:
f=μR=μ(mgCosθ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamOzaiabg2da9iabeY7aTjaadkfacqGH9aqpcqaH8oqBcaGG OaGaamyBaiaadEgaciGGdbGaai4BaiaacohacqaH4oqCcaGGPaaaaa@47F6@
Where: f = Frictional force; μ = Coefficient of friction; R = Normal reaction force; m = Mass of an object; g = Gravity; θ = Inclination angle
Hint: Put θ = 0° for the Plane surface.

Torque (τ)

  • The moment of force is called torque.
Torque formula:
τ= F × r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaeqiXdqNaeyypa0JaaeiiaiaabAeacaqGGaGaey41aqRaaeii aiaabkhaaaa@41A5@
Where: τ (tau) = Torque; F = Force; r = Perpendicular distance

The S.I. unit of torque is Newton-meter (N-m).

Angular Momentum Formula:

J=Iω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamOsaiabg2da9iaadMeacqaHjpWDaaa@3D8C@
Where: J = Angular momentum; I = Moment of Inertia; ω = Angular velocity

The S.I. unit of angular momentum is Kilogram-meter per second (Kg-m2/s).

Work, Power & Energy

Mechanical Work  

  • It is a scalar product (dot product) of force and displacement.
Work formula:
W= F  ·  s  = FsCosθ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaam4vaiabg2da9maaFiaabaGaamOraaGaay51GaGaaeiiaiab l+y6NjaabccadaWhcaqaaiaabohaaiaawEniaiaabccacaqG9aGaae iiaiaabAeacaqGZbGaae4qaiaab+gacaqGZbGaeqiUdehaaa@4C06@
Where: W = Work; F = Force; s = Displacement; θ = Angle between force and displacement

The S.I. unit of Work is Newton-meter (N-m) or Joule (J).

  • Work can be positive, negative, or zero.
  • Work done by a force in circular motion is always zero.
  • W = mgH, in case of vertical displacement by any object.

As per 3rd equation of motion:

W= 1 2 m( v 2 u 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaam4vaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaamyB aiaacIcacaWG2bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyDam aaCaaaleqabaGaaGOmaaaakiaacMcaaaa@4398@
Where: W = Work; m = Mass of an object; v = final velocity; u = initial velocity
Hint: valid when θ = 0°

Mechanical Power

The rate of doing work is called mechanical power.

Power formula:
P= W t MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamiuaiabg2da9maalaaabaGaam4vaaqaaiaadshaaaaaaa@3CDC@
Where: P = Mechanical power; W = Work; t = Rate or time
Note: 1 Horse Power (H.P) = 746 Watt

The S.I. unit of Power is Joule/second (J/s) or Watt.

Another formula of Power:

P= F×v MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamiuaiabg2da9iaabccacaWGgbGaey41aqRaamODaaaa@3F77@
Where: P = Power; F = Force; v = Velocity

Energy

  • Energy can neither be created nor be destroyed, it can only change its form.

The S.I. unit of any form of Energy is Joule (J).

Kinetic Energy Formula:
K.E= 1 2 m v 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaam4saiaac6cacaWGfbGaeyypa0ZaaSaaaeaacaaIXaaabaGa aGOmaaaacaWGTbGaamODamaaCaaaleqabaGaaGOmaaaaaaa@40CB@
Where: m = Mass; v = Velocity

The kinetic energy in terms of linear momentum (formula):

K.E= P 2 2m MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaam4saiaac6cacaWGfbGaeyypa0ZaaSaaaeaacaWGqbWaaWba aSqabeaacaaIYaaaaaGcbaGaaGOmaiaad2gaaaaaaa@3FF4@
Where: P = Linear momentum; m = Mass
Potential Energy Formula:
P.E=mgh MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbaqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamiuaiaac6cacaWGfbGaeyypa0JaamyBaiaadEgacaWGObaa aa@3F3E@
Where: m = Mass; g = Gravity; h = Vertical height
Note: Formula for Potential Energy of Spring:
P.E= 1 2 K x 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamiuaiaac6cacaWGfbGaeyypa0ZaaSaaaeaacaaIXaaabaGa aGOmaaaacaWGlbGaamiEamaaCaaaleqabaGaaGOmaaaaaaa@40B2@

Where: K = Spring constant; x = Compressed or elongated distance

Heat

Temperature conversion formula:

°C 5 = °F32 9 = K273.15 5 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaWaaSaaaeaacqGHWcaScaWGdbaabaGaaGynaaaacqGH9aqpdaWc aaqaaiabgclaWkaadAeacqGHsislcaaIZaGaaGOmaaqaaiaaiMdaaa Gaeyypa0ZaaSaaaeaacaWGlbGaeyOeI0IaaGOmaiaaiEdacaaIZaGa aiOlaiaaigdacaaI1aaabaGaaGynaaaaaaa@4B8F@
Where: = Degree Centigrade; = Degree Fahrenheit; K = Kelvin
  • Important Points:
    •  Normal human body temperature = 37 ℃ or 98.6 ℉ or 310.15 K
    • -40 ℃ = -40 ℉
    • Minimum possible temperature = 0 Kelvin or -273.15 ℃ or 459.67 ℉
    • Absolute zero temperature = 0 Kelvin
    • At 0 Kelvin temperature, the vibration of an atom freezes.

Heat

It is a form of energy whose S.I. unit is Joule (J).

There are two types of heat in nature: Latent heat and Sensible heat.

Latent Heat: All heat energy goes into state (solid, liquid, and gas) change with no change in temperature.

Latent Heat Formula:

Q=m(L.H) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamyuaiabg2da9iaad2gacaGGOaGaamitaiaac6cacaWGibGa aiykaaaa@3F95@
Where: Q = Heat; m = Mass of substance; L.H = Latent Heat

The S.I. unit of Latent Heat is Joule per Kg (J/kg).

Sensible Heat: The state remains the same with temperature change.

Sensible Heat Formula:

Q=mcΔT MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamyuaiabg2da9iaad2gacaWGJbGaeyiLdqKaamivaaaa@3F14@
Where: Q = Heat; m = Mass of substance; c = Heat capacity; ∆T = Change in temperature
Note: The S.I. unit of Heat Capacity (c) is Joule/Kg-Kelvin.

Light

Reflection of Light:

  • For reflection object must be opaque.
  • For plane surface:
i+g=r+g=90° MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamyAaiabgUcaRiaadEgacqGH9aqpcaWGYbGaey4kaSIaam4z aiabg2da9iaaiMdacaaIWaGaeyiSaalaaa@4414@
Where: i = Angle of incidence; r = Angle of reflection; g = glancing angle
  • Laws of Reflection
    • The incident ray, normal, and reflected ray always lie in the same plane.
    • The angle of incidence (i) is always equal to the angle of reflection (r).

Angle of Deviation formula:

δ=180°2i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaeqiTdqMaeyypa0JaaGymaiaaiIdacaaIWaGaeyiSaaRaeyOe I0IaaGOmaiaadMgaaaa@4283@
Where: δ = Angle of deviation; i = Angle of incidence

Plane Mirror:

  • The plane mirror is neither converging nor diverging therefore Power of the plane mirror is zero.
  • The focus of the plane mirror is at infinity, therefore focal length is also infinite.
  • The radius of curvature of the plane mirror is infinite.
  • Magnification (m) of a plane mirror: m = +1
  • Magnification (m) will be positive if the image formed is Erect and Virtual.
  • Magnification (m) will be negative if the image formed is Inverted and Real.
  • Important Point for Plane Mirror:
    • Focal Length: f = ∞
    • Focus: F = ∞
    • Radius of curvature: R = ∞
    • Power of Plane minor: P = 0
    • Magnification: m = +1
    • Nature of image: Erect and Virtual

Refraction of Light:

  • When Light enters from one transparent medium to another transparent medium, this event is called as refraction of light.
  • Example:
    • Liquid is Rarer than solid.
    • Water is rarer than glass.
  • Rarer to Denser: Incident ray reflected toward Normal.
  • Denser to Rarer: Incident ray reflected away from Normal.

Laws of Refraction:

  • Incident, normal, and refracted rays always lie in the same plane.
  • Snell’s law: The ratio of Sin(i) and Sin(r) remains constant called the refractive index of medium 2 with respect to medium 1 and represented by the letter ‘n’.

Refractive index formula:

n= Sin(i) Sin(r) = constant MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamOBaiabg2da9maalaaabaGaci4uaiaacMgacaGGUbGaaiik aiaadMgacaGGPaaabaGaci4uaiaacMgacaGGUbGaaiikaiaadkhaca GGPaaaaiabg2da9iaabccacaqGJbGaae4Baiaab6gacaqGZbGaaeiD aiaabggacaqGUbGaaeiDaaaa@4E59@
Where: n = Refractive index; i = Angle of incidence; r = Angle of reflection
Note: Refractive index is a unitless quantity.

Absolute refractive index formula:

n= c v MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamOBaiabg2da9maalaaabaGaam4yaaqaaiaadAhaaaaaaa@3D0A@
Where: n = Refractive index; c = Speed of light in vacuum; v = Speed of light in medium

Total Internal Reflection (TIR):

  • TIR is possible only when light enters from a denser to a rarer medium.
  • When the angle of refraction (r) is 90°, the angle of incidence (i) is called critical angle.
  • When the angle of incidence (i) is greater than the critical angle(ic) then TIR occurs.
  • Example of TIR:
    • Shinning of diamonds
    • Formation of mirage
    • Optical Fibre
    • Endoscopy

Rainbow:

  • Reason of formation:
    • Dispersion of Light (splitting of white light into seven colors (i.e., VIBGYOR) is called dispersion of Light.)
    • Total internal Reflection
    • Refraction

Lens and Mirror

Mirror:

  • Works on the law of reflection.
  • For all types of mirror: Angle of incident (i) = Angle of reflection (r)
  • Types of Mirrors:
    • Plane Mirror
    • Spherical Minor
      • Concave Mirror (converging mirror)
      • Convex mirror (diverging mirror)
Mirror Formula:
1 f = 1 v + 1 u MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaWaaSaaaeaacaaIXaaabaGaamOzaaaacqGH9aqpdaWcaaqaaiaa igdaaeaacaWG2baaaiabgUcaRmaalaaabaGaaGymaaqaaiaadwhaaa aaaa@4047@
Where: f = Focal length; u = Object distance from pole; v = Image distance from pole
Note:
  • Sign convention for Mirror:
    • Focal Length (f)
      • Positive (+) for convex mirror
      • Negative (-) for concave mirror
    • Object distance (u)
      • Always negative (-) because an object lies on the left side of the mirror.
    • Image distance (v)
      • Positive (+) for convex mirror
      • For the concave mirror, it depends on the object’s location.
Magnification Formula for Mirror:
m= v u = h i h o MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamyBaiabg2da9maalaaabaGaeyOeI0IaamODaaqaaiaadwha aaGaeyypa0ZaaSaaaeaacaWGObWaaSbaaSqaaiaadMgaaeqaaaGcba GaamiAamaaBaaaleaacaWGVbaabeaaaaaaaa@433C@
Where: m = Magnification of mirror; u = Object distance from pole; v = Image distance from pole; hi = image height; ho = Object height
Concave Mirror:
  • The magnification of a concave mirror can be greater than one (m > 1), less than one (m < 1), or equal to one (m = 1).
  • Use of Concave Mirror:
    • Saving Mirror
    • Dentist
    • Head Light
    • Solar furnace
    • Search Light/ Torch
    • Solar cooker
    • Head Mirror of ENT Doctor
    • Reflector Telescope
Convex mirror:
  • All images by convex mirror are Erect, Virtual & Diminished
  • Magnification of Convex mirror: m < (+1)
  • For any position of the object: The image will be Erect (m = +) and Diminished (m < 1).
  • Uses of Convex Mirror:
    • A view finding mirror of vehicles (side mirror / Rearview minor)
    • Mirror used in sharp turns
    • Mirror used in ATM
    • Street Lights

Lens:

  • The lens works on the law of refraction.
Types of lenses:
  • Concave lens (Diverging)
  • Convex lens (Converging)
Lens Formula:
1 f = 1 v 1 u MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaWaaSaaaeaacaaIXaaabaGaamOzaaaacqGH9aqpdaWcaaqaaiaa igdaaeaacaWG2baaaiabgkHiTmaalaaabaGaaGymaaqaaiaadwhaaa aaaa@4052@
Where: f = Focal length; v = Object distance; u = image distance
Magnification formula for lens:
m= v u = h i h o MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamyBaiabg2da9maalaaabaGaamODaaqaaiaadwhaaaGaeyyp a0ZaaSaaaeaacaWGObWaaSbaaSqaaiaadMgaaeqaaaGcbaGaamiAam aaBaaaleaacaWGVbaabeaaaaaaaa@424F@
Where: m = Magnification of lens; v = Image distance; u = Object distance; hi = image height; ho = Object height
Power of Lens:
P= 1 f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamiuaiabg2da9maalaaabaGaaGymaaqaaiaadAgaaaaaaa@3CAF@
Where: P = Power of lens; f = Focal length
Note: The S.I. unit of Power of lens is Dioptre (D).
  • The power of the lens is positive (+) for the convex lens and negative (-) for the concave because focal length (f) is positive (+) for the convex lens and negative (-) for the concave lens.

Eye Defects:

  • Myopia [Near / Short Sightedness]:
    • Near objects are visible.
    • Distant objects are not visible.
    • A concave lens is used to correct myopia.
  • Hypermetropia [Far / Long Sightedness]:
    • Near objects are not visible.
    • Distant objects are visible.
    • Convex lens is used to correct myopia.
  • Presbyopia:
    • Near and Distant objects are not visible.
    • A bifocal lens is used to correct presbyopia.
  • Astigmatism:
    • In this defect, images do not form at a single point and these images are in curve form, the reason behind this defect is distortion in the cornea.
    • A cylindrical Lens (Toric lens) is used to correct Astigmatism.
  • Important note:
    • We use Flint glass to make lenses.
    • The nature of the image at the Retina of the human eye is Real & Inverted.
    • Persistence of eye vision is 1/16 second.
    • Air bubbles inside water behave like a concave lens.
    • Water drops behave like a convex lens.                    
    • Human eyes behave like a camera of 576 megapixels.

Satellite

  • If we consider:
    • v = Object speed
    • vo = Orbital speed (Circular Path)
    • ve = Escape velocity
CasePath of Motion
v < voParabola
v ≥ voCircular or elliptical
v ≥ veHyperbolic

Orbital speed formula:

v o = G× M e R e +h MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamODamaaBaaaleaacaWGVbaabeaakiabg2da9maakaaabaWa aSaaaeaacaWGhbGaey41aqRaamytamaaBaaaleaacaWGLbaabeaaaO qaaiaadkfadaWgaaWcbaGaamyzaaqabaGccqGHRaWkcaWGObaaaaWc beaaaaa@450F@
Where: G = Gravitational constant; Me = Mass of Earth; Re = Radius of Earth; h = Height of object from the surface of Earth.
Note: If the object is near the earth’s surface, we consider h ≅ 0. Then we consider the orbital formula as given below:
v o = G× M e R e +0 = G× M e R e MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamODamaaBaaaleaacaWGVbaabeaakiabg2da9maakaaabaWa aSaaaeaacaWGhbGaey41aqRaamytamaaBaaaleaacaWGLbaabeaaaO qaaiaadkfadaWgaaWcbaGaamyzaaqabaGccqGHRaWkcaaIWaaaaaWc beaakiabg2da9maakaaabaWaaSaaaeaacaWGhbGaey41aqRaamytam aaBaaaleaacaWGLbaabeaaaOqaaiaadkfadaWgaaWcbaGaamyzaaqa baaaaaqabaaaaa@4CCE@
Note: The value of orbital speed does not depend on the satellite’s mass.

Escape velocity formula:

v e = 2 × v o MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamODamaaBaaaleaacaWGLbaabeaakiabg2da9maakaaabaGa aGOmaaWcbeaakiabgEna0kaadAhadaWgaaWcbaGaam4Baaqabaaaaa@4152@
Where: ve = Escape velocity; vo = Orbital speed

Note: The ratio of escape velocity to the orbital speed is √2:1.

Note: The value of escape velocity does not depend on the mass of an object.

Kepler’s law of Planetary motion:

  • 1st Law (Law of Orbits): “All planets around the sun revolve in an elliptical path having sun one of its foci.”
  • 2nd Law (Law of Arial Speed): “The line joining any planet to the sun sweeps out an equal area in equal time, i.e., the areal speed of the planet remains constant.”
  • 3rd Law (Law of Periods): “The square of the Orbital periods of the planets are directly proportional to the cubes of the semi-major axes of their orbits”
T 2 r 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa Gcbaaeaaaaaaaaa8qacaWGubWaaWbaaSqabeaacaaIYaaaaOGaeyyh IuRaamOCamaaCaaaleqabaGaaG4maaaaaaa@3E6A@
Where: T = Orbital period; r = Semi-major axis
Note: For numerical solving, remember this formula:
T 1 2 T 2 2 = r 1 3 r 2 3 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaWaaSaaaeaacaWGubWaa0baaSqaaiaaigdaaeaacaaIYaaaaaGc baGaamivamaaDaaaleaacaaIYaaabaGaaGOmaaaaaaGccqGH9aqpda WcaaqaaiaadkhadaqhaaWcbaGaaGymaaqaaiaaiodaaaaakeaacaWG YbWaa0baaSqaaiaaikdaaeaacaaIZaaaaaaaaaa@4496@
  • Important Note:
    • The total energy of a satellite which is revolving around a planet is always negative.
    • Reason for an atmosphere on Earth:
      • The gravitational force of the earth.
      • High escape velocity.
    • Kepler’s 2nd law is based on the law of conservation of angular momentum.`

Matter

  • Five States of matter are:
    • Solid
    • Liquid
    • Gas
    • Plasma
    • Bose-Einstein Condensate

Pressure formula:

P= F A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamiuaiabg2da9maalaaabaGaamOraaqaaiaadgeaaaaaaa@3C9A@
Where: F = Force; A = Cross-sectional area
  • Note:
    • The S.I. unit of Pressure is Newton per square meter (N/m2) or Pascal (Pa).
    • 1 Pascal = 1 N/m2
    • Pressure always acts perpendicular to the surface.
Pressure applied by a fluid:
P=ρgH MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamiuaiabg2da9iabeg8aYjaadEgacaWGibaaaa@3E72@
Where: P = Pressure; ρ = Density of fluid; g = acceleration due to gravity; H = Height of a point from the free liquid surface
  • Archimedes’ Principle:
    • The weight of an object is felt less inside water.
    • The weight of an object decreases inside water, as much as the fluid is displaced.
    • Actual weight = Apparent weight + Weight of displaced fluid
    • Loss in weight = Weight of displaced fluid.
    • The weight of an object will decrease as much as the buoyant force will act on it.
    • Loss in weight = Buoyant Force (also called upthrust or thrust)
  • Pascal Law:
    • The pressure applied at any part of a fluid equally transmits at each part of that fluid.
    • Hydraulic Brake and Hydraulic lift work on a principle of Pascal’s law.
    • In the case of static fluid, pressure at different points in the same horizontal Level will be the same.

Bernoulli’s Theorem:

  • Applicable on flowing fluids
  • Bernoulli’s Equation:
P+ 1 2 ρ v 2 +ρgH= constant MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamiuaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaeqyW diNaamODamaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeg8aYjaadE gacaWGibGaeyypa0JaaeiiaiaabogacaqGVbGaaeOBaiaabohacaqG 0bGaaeyyaiaab6gacaqG0baaaa@4D90@
Where: P = Pressure; ρ = Density; v = Velocity; g = Gravity; H = Height
Note: Bernoulli’s theorem works on the “Law of conservation of energy”.

Surface Tension:

  • Liquid molecules tend to stick together and form a thin layer (Like a membrane) on the surface of the liquid.
  • Mosquitoes, Insects, etc can sit on water because of surface tension.
  • Kerosine oil or detergent powder is used to reduce the value of surface tension.
  • Surface tension decreases with an increase in temperature.
  • Raindrops become spherical due to surface tension.
  • Surface tension occurs due to cohesive force.
  • Cohesive Force: The forces between the molecules of the same substance are called cohesive forces.
  • Adhesive Force: The forces between the molecules of different substances are called adhesive force.

Viscosity:

  • Friction between fluid layers is called viscosity.
Viscous force formula:
F v =6πηr v T MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamOramaaBaaaleaacaWG2baabeaakiabg2da9iaaiAdacqaH apaCcqaH3oaAcaWGYbGaamODamaaBaaaleaacaWGubaabeaaaaa@4340@
Where: Fv = Viscous force; η = Coefficient of viscosity; r = Radius of an object; vT = Terminal velocity
Note: The S.I. unit of viscosity (η) is Newton-second per square meter (N-s/m2).

Magnetism

Natural Magnet

  • A natural magnet made from an iron ore called magnetite (Fe3O4).
  • Unlike poles attract each other while Like poles repel each other.
  • Monopole does not exist. No matter how many parts a magnet is broken into, it will always have two poles (i.e.; North pole & South pole).

Magnetic field

  • It is a region in space around a magnet, where the force of magnetism can be detected.
  • Direction of Magnetic line of force:
    • Outside Magnet: North to South
    • Inside Magnet: South to North
  • Two magnetic Lines of force never cut each other.
  • Any point on the magnetic line of force gives the direction of a magnetic field.
  • The magnetic field is a vector quantity.
  • The S.I. unit of magnetic field strength is Tesla or Weber/meter2.
  • The CGS unit of magnetic field strength is Gauss.
  • Current-carrying conductors generate the magnetic field.
Magnetic field formula:
ΔB=K I(ΔL)Sinθ r 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaeyiLdqKaamOqaiabg2da9iaadUeadaWcaaqaaiaadMeacaGG OaGaeyiLdqKaamitaiaacMcaciGGtbGaaiyAaiaac6gacqaH4oqCae aacaWGYbWaaWbaaSqabeaacaaIYaaaaaaaaaa@47DF@
Note:
K= μ 0 4π = 10 7   Newton Amper e 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaam4saiabg2da9maalaaabaGaeqiVd02aaSbaaSqaaiaaicda aeqaaaGcbaGaaGinaiabec8aWbaacqGH9aqpcaaIXaGaaGimamaaCa aaleqabaGaeyOeI0IaaG4naaaakiaabccadaWcaaqaaiaab6eacaqG LbGaae4DaiaabshacaqGVbGaaeOBaaqaaiaadgeacaWGTbGaamiCai aadwgacaWGYbGaamyzamaaCaaaleqabaGaaGOmaaaaaaaaaa@5126@

Where: μ0 = Permeability of free space

Where: B = Magnetic field; I = Electric current; L = Length of wire; r = Distance of any point from wire
Force on a current-carrying conductor in a magnetic field (formula):
F=BILSinθ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamOraiabg2da9iaadkeacaWGjbGaamitaiGacofacaGGPbGa aiOBaiabeI7aXbaa@41C3@
Where: B = Magnetic field; I = Electric current; L = Length of wire; θ = Angle between another magnetic field and current carrying conductor
Force on a charged particle in a magnetic field (formula):
F=qvBSinθ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamOraiabg2da9iaadghacaWG2bGaamOqaiGacofacaGGPbGa aiOBaiabeI7aXbaa@4215@
Where: q = Charge particle; v = Velocity; B = Magnetic field
Force on a charged particle in electric field (formula):
F=qE MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamOraiabg2da9iaadghacaWGfbaaaa@3CAF@
Where: q = Charge particle; E = Electric field

Fleming’s Left-hand Rule

  • Used in electric motors.
  • They are used to find the direction of force acting in an electric motor.

Fleming’s Right-hand Rule

  • Used in an electric generator.          
  • Used to find the direction of induced current.

Wave

A wave occurs due to disturbance in any medium.

Types of Waves

Electromagnetic waves:
  • They do not require any material medium to travel, i.e., they can travel even in a vacuum.
  • Only transverse.
  • Examples: Radio waves, Microwave, Infrared waves, Visible light, Ultraviolet rays, X-rays, γ-rays
  • Light is an example of an electromagnetic wave.
Mechanical Waves:
  • They require a material medium to travel, i.e., they cannot travel in a vacuum.
  • Types of Mechanical waves:
    • Longitudinal waves
      • This wave is generated due to the parallel vibration of particles of medium to the wave direction.
      • But particles of the medium do not travel, only energy transfers from one point to another.
      • Example: Sound wave, Wave in spring
    • Transverse Waves
      • This wave is generated due to the perpendicular vibration of particles of the medium.
      • But particles of the medium do not travel from one place to another, only energy transfers from one point to another.
      • Example: Waves in string.

Sound

Density effect on the speed of sound:
Speed of sound in solid   1 Density MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaae4uaiaabchacaqGLbGaaeyzaiaabsgacaqGGaGaae4Baiaa bAgacaqGGaGaae4Caiaab+gacaqG1bGaaeOBaiaabsgacaqGGaGaae yAaiaab6gacaqGGaGaae4Caiaab+gacaqGSbGaaeyAaiaabsgacaqG Gaaeaaaaaaaaa8qacqGHDisTcaqGGaWaaSaaaeaacaaIXaaabaWaaO aaaeaacaqGebGaaeyzaiaab6gacaqGZbGaaeyAaiaabshacaqG5baa leqaaaaaaaa@5785@

Stiffness effect on the speed of sound:

Stiffness  Speed of sound MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaae4uaiaabshacaqGPbGaaeOzaiaabAgacaqGUbGaaeyzaiaa bohacaqGZbGaaeiiaabaaaaaaaaapeGaeyyhIuRaaeiiaiaabofaca qGWbGaaeyzaiaabwgacaqGKbGaaeiiaiaab+gacaqGMbGaaeiiaiaa bohacaqGVbGaaeyDaiaab6gacaqGKbaaaa@50AD@
Note: The speed of sound increases with an increase in stiffness.

Frequency

The number of cycles in one second is called frequency.

Frequency formula:
f= 1 T MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamOzaiabg2da9maalaaabaGaaGymaaqaaiaadsfaaaaaaa@3CB3@
Where: f = Frequency; T = Time in second
Note: The S.I. unit of frequency is Hertz (Hz) or Per second (1/s).

Time Period

The time taken in one complete cycle is called time period.

T= 1 f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamivaiabg2da9maalaaabaGaaGymaaqaaiaadAgaaaaaaa@3CB3@

Wavelength

  • The distance between two consecutive crests or troughs is called wavelength (λ).
  • SI unit of wavelength (λ) is a meter.
  • Another unit can be Angstrom (Symbol- Å), Nano-meter (Symbol- nm), etc.

Amplitude

  • The maximum displacement from a mean position is called amplitude.

Velocity of a wave (formula)

v=f×λ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamODaiabg2da9iaadAgacqGHxdaTcqaH7oaBaaa@3FD5@
Or
v= λ T MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamODaiabg2da9maalaaabaGaeq4UdWgabaGaamivaaaaaaa@3DBC@
Where: υ = Velocity of wave; f = frequency; λ = wave length; T = time-period

Audible frequency range

  • For the human ear: 20 Hz to 20000 Hz
  • Sound frequency less than 20 Hz: Infrasonic sound
  • Sound frequency greater than 20,000 Hz: Ultrasonic sound

Loudness of sound

Depends on the amplitude of the vibration of vibrating objects.

Loudness   (Amplitude) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaaeitaiaab+gacaqG1bGaaeizaiaab6gacaqGLbGaae4Caiaa bohacaqGGaaeaaaaaaaaa8qacqGHDisTcaqGGaGaaeikaiaabgeaca qGTbGaaeiCaiaabYgacaqGPbGaaeiDaiaabwhacaqGKbGaaeyzaiaa bMcadaahaaWcbeqaaiaaikdaaaaaaa@4DE8@
  • The unit of loudness is Decibel (dB) or Bel.
  • 1 Bel = 10 dB

Mach number formula

Mach Number =  Speed of Object Speed of Sound MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaaeytaiaabggacaqGJbGaaeiAaiaabccacaqGobGaaeyDaiaa b2gacaqGIbGaaeyzaiaabkhacaqGGaGaaeypaiaabccadaWcaaqaai aabofacaqGWbGaaeyzaiaabwgacaqGKbGaaeiiaiaab+gacaqGMbGa aeiiaiaab+eacaqGIbGaaeOAaiaabwgacaqGJbGaaeiDaaqaaiaabo facaqGWbGaaeyzaiaabwgacaqGKbGaaeiiaiaab+gacaqGMbGaaeii aiaabofacaqGVbGaaeyDaiaab6gacaqGKbaaaaaa@5E1A@
Note: If Mach number = 1, Speed of an object = Speed of sound.

Energy of Wave (formula)

E= hc λ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbyLevtb stHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbItLDhi s9wBH5garqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqr Ffpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=xfr=xb9adbiqaaeaacaGaaiaabeqaamaaeaqbaa GcbaGaamyraiabg2da9maalaaabaGaamiAaiaadogaaeaacqaH7oaB aaaaaa@3E87@
Where: E = Energy of a wave; h = Planck’s constant; c = Speed of light in vacuum

Dispersion of light

  • The splitting of white light into seven colors is called dispersion of light.

Supersonic objects

  • If the speed of an object is greater than the speed of sound then the object is called a supersonic object.
  • If the speed of a missile is between 1.2 to 5 Mach then it is called a supersonic missile.

Missile Range

  • 1.2 to 5 Mach⇒ Supersonic missile
  • Greater than 5 Mach⇒ Hypersonic missile
  • Important points:
    • For echo minimum distance should be 17.15 meters
    • Echo works on the law of reflection of sound.
    • Persistence of sound = 1/10 second
    • Persistence of eye vision = 1/16 second
    • A fathometer is used to find sea depth.
    • Full form of SONAR = Sound Navigation And Ranging          
    • Electromagnetic waves do not have any charge.

Unit and Dimension

QuantityS.I. UnitDimension
LengthMeter (m)[L] or [M0L1T0]
MassKilogram (Kg)[M] or [M1L0T0]
TimeSecond (s)[T] or [M0L0T1]
Electric currentAmpere (A)[A]
Amount of substanceMole (mol)[mol]

Conclusion:

It is impossible to cover everything in a single article. No matter how much you study for the exam, it may never feel like enough. The’ Formula Glimpses’ section is ideal if you’re short on time and need a quick revision. However, if you have more time to prepare, I highly recommend reviewing all the PDFs in the ‘Read Online’ section.

In this article, since all the physics chapters are completed, you can read them from here. Despite this, you can download the notes using the link below.

Shivansh

I am a mechanical engineer who researches and provides precise notes for students preparing for general competitive exams.

Recent Notes

Leave a Comment